Privacy Masks
Synthesized supports attribute-level data anonymization - where information relating to a data subject (e.g. a clients name) is removed, thereby eliminating the possibility of identifying the data subject. The process is irreversible and achieved with data obfuscation. If needed, the user can obfuscate any data with any of the following techniques:
-
Random strings. Generate random strings with similar format to input values, for example "490GH830L" could be transformed into "L3N8O3H2M".
-
Hashing. Using a HMAC-SHA256 hashing algorithm, the input values are hashed into a fixed-length string. A secret string (which is either configured or randomly generated) is used to vary the hashed output.
-
Nulling. The contents of a column can be completely removed, and the output dataset would contain an empty column.
-
Binning. Individual values of attributes are replaced with a broader category. For example, the value "19" of the attribute "Age" may be replaced by " ≤ 20", the value "23" by "20 < Age ≤ 30" , etc.
-
Date shifting. Shift dates by a random number of days.
-
Time extraction. Extract/preserve a component of a datetime column as specified by a given config.
-
Typos. Generate typos in the input values.
-
Whitespace. Add or remove whitespace from the input values.
-
Acronym. Replace the input values with their acronyms.
FormatPreservingMask
FormatPreservingMask
can apply generic format-preserving hashing transformations
for a given regex pattern.
from synthesized.privacy import FormatPreservingMask
import pandas as pd
df = pd.DataFrame({'Id': ['AAA001', 'BBB001', 'AAA002', 'AAA001', 'BBB001']})
transformer = FormatPreservingMask('Id', pattern=r'[ABC]{3}\d{3}')
transformer.fit(df)
transformer.transform(df)
IDs that are the same in the original DataFrame are also the same in the transformed DataFrame.
Original | Masked |
---|---|
AAA001 |
AAB474 |
BBB001 |
BCC715 |
AAA002 |
BBA282 |
AAA001 |
CAA225 |
BBB001 |
ACA623 |
Properties
-
name
: Name of the column to mask. -
pattern
: Regex pattern of the string to be generated. -
seed
(optional): Random seed for the transformer.
HashingMask
HashingMask
can apply generic HMAC-SHA256 hashing transformations
for a given regex pattern. An optional secret string can be provided as a seed for the hashing
function. If this is not provided, a random string is generated and used as the seed.
Two HashingMask
objects with the same seed will produce the same output for the same input.
Different hashing masks without the same seed will produce different outputs for the same input.
from synthesized.privacy import HashingMask
import pandas as pd
df = pd.DataFrame({'Id': ['AAPL', 'AMZN', 'GOOG', 'AAPL', 'NTFX']})
transformer = HashingMask('Id', seed='some_secret')
transformer.fit(df)
transformer.transform(df.copy())
transformer2 = HashingMask('Id', seed='other_secret')
transformer2.fit_transform(df) # different output to the first transformer.
IDs that are the same in the original DataFrame are encoded to the same value in the transformed DataFrame.
Original | Masked |
---|---|
AAPL |
b1af07c139ce64efd19aff23ab605acb |
AMZN |
4b0038c8af4cc6bde3ba98e29044a5e9 |
GOOG |
e53afe2ef7b5b0dfc0ed5fa88ab2bce9 |
AAPL |
b1af07c139ce64efd19aff23ab605acb |
NTFX |
145e575dc0aafa07671afaa3cf1b988h |
Properties
-
name
: Name of the column to mask. -
seed
(optional): Random seed for the transformer.
NanMask
NanMask
masks the data by nulling out a given column.
The following example illustrates it:
from synthesized.privacy import NanMask
import pandas as pd
df = pd.DataFrame({'card_no': ['490 508 10L', 'ff4sff4', 'jdj DFj 34', '123POFjd33', '2334 fgg4 223']})
transformer = NanMask(name='card_no')
transformer.fit(df)
transformer.transform(df)
Original | Masked |
---|---|
490 508 10L |
Null |
ff4sff4 |
Null |
jdj DFj 34 |
Null |
123POFjd33 |
Null |
2334 fgg4 223 |
Null |
Properties
-
name
: Name of the column to mask.
RoundingMask
RoundingMask
masks a numerical column by binning the values to N bins.
Arg bins
determines the number of bins to bin the value range of the column, the default value is 20.
The following example illustrates it:
from synthesized.privacy import RoundingMask
import pandas as pd
import numpy as np
df = pd.DataFrame({'age': np.random.randint(1, 97, size=(5000,))})
transformer = RoundingMask(name='age', bins=10)
transformer.fit(df)
transformer.transform(df)
Original | Masked |
---|---|
5 |
(0.999, 11.0] |
72 |
(69.0, 78.0] |
67 |
(40.0, 50.0] |
59 |
(59.0, 69.0] |
60 |
(59.0, 69.0] |
Properties
-
name
: Name of the column to mask. -
n_bins
(optional): Number of bins to split the data into. Default20
.
DateShiftMask
DateShiftMask
adds or subtracts days to datetime fields. It can add or subtract random numbers of days, or the same number of days, to all of the fields, or to groups of values (specified by some entity_col
).
The following example illustrates a use case with the DateShiftMask
:
from synthesized.privacy import DateShiftMask
import pandas as pd
df = pd.DataFrame({'date': ['5/06/2014', '10/06/2015', '18/06/2015', '7/07/2015', '14/07/2016'])})
transformer = DateShiftMask(name='date', upper_bound=10, lower_bound=10)
transformer.fit(df)
transformer.transform(df)
Original | Masked |
---|---|
5/06/2014 |
29/05/2014 |
10/06/2015 |
12/06/2015 |
18/06/2015 |
17/06/2015 |
7/07/2015 |
10/07/2015 |
14/07/2016 |
15/07/2016 |
Properties
-
name
: Name of the column to mask. -
upper_bound
(optional): Range of shift days forward. For example, 5 means dates are shifted at most 5 days into the future. Default5
. -
lower_bound
(optional): Range of shift days back. For example, 5 means dates are shifted at most 5 days into the past. Default0
. -
maintain_diff
(optional): Whether to maintain the time interval between events in a sequence. DefaultFalse
. -
maintain_order
(optional): Whether to maintain the ordering of the sequence. Default True. Note: Ifmaintain_diff=True
thenmaintain_order
is also set toTrue
regardless of input. -
entity_col
(optional): Unique entities to groupby when maintaining the order/diff of events in a sequence. DefaultNone
.
TimeExtractionMask
TimeExtractionMask
allows for the extraction of a specific section of a date or datetime field.
The following example illustrates it:
from synthesized.privacy import TimeExtractionMask
import pandas as pd
df = pd.DataFrame({'date': ['5/06/2014', '10/06/2015', '18/06/2015', '7/07/2015', '14/07/2016'])})
transformer = TimeExtractionMask(name='date', portion='year')
transformer.fit(df)
transformer.transform(df)
Original | Masked |
---|---|
5/06/2014 |
2014 |
10/06/2015 |
2015 |
18/06/2015 |
2015 |
7/07/2015 |
2015 |
14/07/2016 |
2016 |
Properties
-
name
: Name of the column to mask. -
portion
(optional): The portion of the datetime to extract. Options include:"date"
,"dayofweek"
,"dayofyear"
,"hour"
,"microsecond"
,"minute"
,"month"
,"nanosecond"
,"quarter"
,"second"
,"time"
,"weekday"
,"weekofyear"
, and"year"
. Default"year"
.
TypoMask
TypoMask
can apply generic and random typo transformations for a given input string.
The typos introduced are random and can be any of the following:
Types of typos
-
Missing character
-
Character swap
-
Nearby character (assuming a QWERTY keyboard)
-
Extra character
-
Similar character
-
Repeated character (repeating an already existing character)
-
Random space
from synthesized.privacy import TypoMask
import pandas as pd
df = pd.DataFrame({'Name': ['John', 'Doe', 'Jane', 'Smith', 'John']})
transformer = TypoMask(name='Name', typo_rate=0.5)
transformer.fit(df)
transformer.transform(df)
Random typos are generated for the input values at the specified rate.
Original | Masked |
---|---|
John |
Jonh |
Doe |
Doe |
Jane |
Janee |
Smith |
Smith |
John |
Johm |
Properties
-
name
: Name of the column to mask. -
typo_rate
: Rate of typos to introduce. Default0.1
. -
seed
(optional): Random seed for the transformer.
WhiteSpaceMask
WhitespaceMask
can apply generic and random whitespace transformations for a given input string.
from synthesized.privacy import WhiteSpaceMask
import pandas as pd
df = pd.DataFrame({'Name': ['John', 'Doe', 'Jane', 'Smith', 'John']})
transformer = WhiteSpaceMask(name='Name', whitespace_rate=0.5)
transformer.fit(df)
transformer.transform(df)
Random typos are generated for the input values at the specified rate.
Original | Masked |
---|---|
John |
Jo hn |
Doe |
Doe |
Jane |
J ane |
Smith |
Smith |
John |
John |
Properties
-
name
: Name of the column to mask. -
whitespace_rate
: Rate of whitespace to modify. Default0.1
. -
seed
(optional): Random seed for the transformer.
AcronymMask
AcronymMask
can apply generic acronym transformations for a given input string.
The acronym is generated by taking the first letter of each word in the input string.
The delimeters can be specified to separate the acronym letters.
If more than one delimeter is specified, a random delimeter is chosen for each word from the list of supplied delimeters
.
from synthesized.privacy import AcronymMask
import pandas as pd
df = pd.DataFrame({'Company': ["A Good Company", "A Bad Company", "A Great Company", "A Terrible Company", "A Wonderful Company"]})
transformer = AcronymMask(name='Name', delimeters=["", "-", "."])
transformer.fit(df)
transformer.transform(df)
Random delimeters are generated for the input values from the specified list.
Original | Masked |
---|---|
A Good Company |
A.G.C |
A Bad Company |
ABC |
A Great Company |
A.G.C |
A Terrible Company |
A-T-C |
A Wonderful Company |
AWC |
Properties
-
name
: Name of the column to mask. -
delimeters
: List or string of delimeters to separate the acronym letters. Default""
. -
seed
(optional): Random seed for the transformer.
MaskingFactory
MaskingFactory
can be used to create a set of data masking transformers, as described above, to
transform multiple columns of a DataFrame in the same function call. To demonstrate this, we will use the following
example DataFrame:
from synthesized.privacy import MaskingFactory
from faker import Faker
import pandas as pd
fkr = Faker()
df = pd.DataFrame({'Username': [fkr.user_name() for _ in range(1000)],
'Name': [fkr.name() for _ in range(1000)],
'Password': [fkr.password() for _ in range(1000)],
'CreditCardNo': [fkr.credit_card_number() for _ in range(1000)],
'Age': [fkr.pyint(min_value=10, max_value=78) for _ in range(1000)],
'MonthlyIncome': [fkr.pyint(min_value=1000, max_value=10000) for _ in range(1000)]})
In order to create a set of transformers to act on this DataFrame a MaskingFactory
object is first created.
A config
dictionary object is then supplied to the create_masks()
method of this factory, in order to specify the masking
technique to use on specific columns in the DataFrame:
masking_factory = MaskingFactory()
config = {
"rounding": [
{"name": "Age",
"bins": "20"},
{"name": "MonthlyIncome",
"bins": "3"}
],
"nan": [
{"name": "Password"},
{"name" : "CreditCardNo"}
]
}
privacy_masks = masking_factory.create_masks(df, config)
privacy_masks.fit(df)
privacy_masks.transform(df, inplace=True)
The possible keys for the config dictionary are the appropriate keywords for each masking technique, as described above.
The values are then lists containing dictionaries that specify the name of the column to be masked, using the name
keyword,
as well as any additional arguments to be passed to the appropriate mask. For instance, in the above example, the
columns Age
and MonthlyIncome
are masked using the RoundingMask
with nbins
set for each column
independently. The columns Password
and CreditCardNo
are masked using the NanMask
which requires no additional arguments.